Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(21): e2104282119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35576470

RESUMEN

Malaria control interventions target nocturnal feeding of the Anopheles vectors indoors to reduce parasite transmission. Mass deployment of insecticidal bed nets and indoor residual spraying with insecticides, however, may induce mosquitoes to blood-feed at places and at times when humans are not protected. These changes can set a ceiling to the efficacy of these control interventions, resulting in residual malaria transmission. Despite its relevance for disease transmission, the daily rhythmicity of Anopheles biting behavior is poorly documented, most investigations focusing on crepuscular hours and nighttime. By performing mosquito collections 48-h around the clock, both indoors and outdoors, and by modeling biting events using circular statistics, we evaluated the full daily rhythmicity of biting in urban Bangui, Central African Republic. While the bulk of biting by Anopheles gambiae, Anopheles coluzzii, Anopheles funestus, and Anopheles pharoensis occurred from sunset to sunrise outdoors, unexpectedly ∼20 to 30% of indoor biting occurred during daytime. As biting events did not fully conform to any family of circular distributions, we fitted mixtures of von Mises distributions and found that observations were consistent with three compartments, corresponding indoors to populations of early-night, late-night, and daytime-biting events. It is not known whether these populations of biting events correspond to spatiotemporal heterogeneities or also to distinct mosquito genotypes/phenotypes belonging consistently to each compartment. Prevalence of Plasmodium falciparum in nighttime- and daytime-biting mosquitoes was the same. As >50% of biting occurs in Bangui when people are unprotected, malaria control interventions outside the domiciliary environment should be envisaged.


Asunto(s)
Anopheles , Ritmo Circadiano , Conducta Alimentaria , Mordeduras y Picaduras de Insectos , Malaria , Control de Mosquitos , Animales , Anopheles/parasitología , Anopheles/fisiología , República Centroafricana , Humanos , Mordeduras y Picaduras de Insectos/parasitología , Malaria/prevención & control , Malaria/transmisión , Control de Mosquitos/métodos , Mosquitos Vectores , Plasmodium falciparum/aislamiento & purificación
2.
Wellcome Open Res ; 7: 287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36874567

RESUMEN

We present a genome assembly from an individual female Anopheles funestus (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae). The genome sequence is 251 megabases in span. The majority of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.4 kilobases in length.

3.
Sci Rep ; 11(1): 15781, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349141

RESUMEN

In Central Africa, the malaria vector Anopheles coluzzii is predominant in urban and coastal habitats. However, little is known about the environmental factors that may be involved in this process. Here, we performed an analysis of 28 physicochemical characteristics of 59 breeding sites across 5 urban and rural sites in coastal areas of Central Africa. We then modelled the relative frequency of An. coluzzii larvae to these physicochemical parameters in order to investigate environmental patterns. Then, we assessed the expression variation of 10 candidate genes in An. coluzzii, previously incriminated with insecticide resistance and osmoregulation in urban settings. Our results confirmed the ecological plasticity of An. coluzzii larvae to breed in a large range of aquatic conditions and its predominance in breeding sites rich in ions. Gene expression patterns were comparable between urban and rural habitats, suggesting a broad response to ions concentrations of whatever origin. Altogether, An. coluzzii exhibits a plastic response to occupy both coastal and urban habitats. This entails important consequences for malaria control in the context of the rapid urban expansion in Africa in the coming years.


Asunto(s)
Anopheles/genética , Ecosistema , Larva/genética , África Central , Animales , Anopheles/efectos de los fármacos , Anopheles/fisiología , Fenómenos Químicos , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Iones , Larva/efectos de los fármacos , Larva/fisiología , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores/genética , Osmorregulación
4.
Sci Rep ; 9(1): 14753, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31611571

RESUMEN

Complexes of closely related species provide key insights into the rapid and independent evolution of adaptive traits. Here, we described and studied Anopheles fontenillei sp.n., a new species in the Anopheles gambiae complex that we recently discovered in the forested areas of Gabon, Central Africa. Our analysis placed the new taxon in the phylogenetic tree of the An. gambiae complex, revealing important introgression events with other members of the complex. Particularly, we detected recent introgression, with Anopheles gambiae and Anopheles coluzzii, of genes directly involved in vectorial capacity. Moreover, genome analysis of the new species allowed us to clarify the evolutionary history of the 3La inversion. Overall, An. fontenillei sp.n. analysis improved our understanding of the relationship between species within the An. gambiae complex, and provided insight into the evolution of vectorial capacity traits that are relevant for the successful control of malaria in Africa.


Asunto(s)
Anopheles/genética , Malaria/transmisión , Mosquitos Vectores/genética , Animales , Evolución Biológica , Evolución Molecular , Femenino , Gabón/epidemiología , Genoma de los Insectos , Humanos , Malaria/epidemiología , Filogenia
5.
Evol Appl ; 12(8): 1583-1594, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31462916

RESUMEN

During the last decade, the endosymbiont bacterium Wolbachia has emerged as a biological tool for vector disease control. However, for long time, it was believed that Wolbachia was absent in natural populations of Anopheles. The recent discovery that species within the Anopheles gambiae complex host Wolbachia in natural conditions has opened new opportunities for malaria control research in Africa. Here, we investigated the prevalence and diversity of Wolbachia infection in 25 African Anopheles species in Gabon (Central Africa). Our results revealed the presence of Wolbachia in 16 of these species, including the major malaria vectors in this area. The infection prevalence varied greatly among species, confirming that sample size is a key factor to detect the infection. Moreover, our sequencing and phylogenetic analyses showed the important diversity of Wolbachia strains that infect Anopheles. Co-evolutionary analysis unveiled patterns of Wolbachia transmission within some Anopheles species, suggesting that past independent acquisition events were followed by co-cladogenesis. The large diversity of Wolbachia strains that infect natural populations of Anopheles offers a promising opportunity to select suitable phenotypes for suppressing Plasmodium transmission and/or manipulating Anopheles reproduction, which in turn could be used to reduce the malaria burden in Africa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...